版权归原作者所有,如有侵权,请联系我们

[科普中国]-线性算子扰动理论

科学百科
原创
科学百科为用户提供权威科普内容,打造知识科普阵地
收藏

线性算子扰动理论是研究算子在微小变动的情况下,它的各种性质变化的一种理论。线性算子扰动理论的基本问题是:设T是巴拿赫空间上的线性算子,A是扰动算子,当T+A和T在某种意义下很接近时,如何由T的性质导出T+A的相应性质?

简介线性算子扰动理论是研究算子在微小变动的情况下,它的各种性质变化的一种理论。线性算子扰动理论的基本问题是:设T是巴拿赫空间上的线性算子,A是扰动算子,当T+A和T在某种意义下很接近时,如何由T的性质导出T+A的相应性质?扰动理论主要包括以下几方面的内容:

1.讨论某些重要的算子类(例如闭算子类、弗雷德霍姆算子类等)在扰动下的不变性。

2.研究在小扰动下,对应的特征值和特征向量的变化情况。

3.研究算子经过扰动以后,它的谱的变化情况。1

详细内容为了研究振动系统受到微小扰动后的情况,人们利用反映扰动前系统的较简单的线性算子特征值问题的解,求出了反映经过扰动后算子特征值问题的近似解。E.薛定谔发展了类似的方法,深入地研究了量子力学中遇到的特征值问题,这就是量子力学中的微扰法。其后,一些数学家对这些微扰法中出现的级数的收敛性进行了一系列研究。与此同时,还研究了对于散射理论和量子场论有重要意义的连续谱的扰动。他们的工作启示人们进一步考察无界线性算子的各种扰动问题。线性算子扰动理论已发展为算子理论中引人瞩目的一个重要分支。
线性算子扰动理论的基本问题是:设T是巴拿赫空间上的线性算子,A是扰动算子,当T+A和T在某种意义下很接近时,如何由T的性质导出T+A的相应性质?扰动理论中大量出现的是无界算子,这是因为经典力学和量子力学中出现的算子常常是无界的。薛定谔方程中出现的算子就是无界算子经过位势项U(x)扰动后得到的。
扰动理论主要包括以下几个方面的内容。①讨论某些重要的算子类(例如闭算子类、自共轭算子类、弗雷德霍姆算子类等)在扰动下的不变性。关于闭算子的扰动,有下面的概念和结果:设T,A是巴拿赫空间x到Y的两个线性算子,存在α,b≥0,使得对x∈D(T),成立‖Ax‖≤α‖x‖+b‖Tx‖,则称A关于T是相对有界的,而满足上式的b)的下确界称为A关于T的相对界。又若当{xn}和{Txn}均为有界时,{Axn}必有收敛子序列,则称A关于T是相对紧的。如果T是闭算子,而A关于T的相对界小于1,或者A关于T是相对紧的,而T+A也是闭算子。②研究在小扰动下,对应的特征值和特征向量的扰动情况。这方面有下述基本结果:当T为巴拿赫空间上一个有界线性算子,而μ0为T的孤立的有限重特征值,它的重数是m,那么对ε>0,存在δ>0,使得当扰动算子A的范数小于δ时,算子T+A在圆{μ||μ-μ0|H是可分的希尔伯特空间,A是H上自共轭算子。对ε>0,存在自共轭的希尔伯特-施密特算子S,‖S‖2A+S仅有纯点谱(指特征向量张成闭线性子空间是全空间)。
类似的结果,对正常算子也成立。另外,研究算子半群的生成元经过小扰动后,算子半群性态的变化,也是扰动理论的一个课题。

线性算子线性空间之间保持线性运算的映射。设X,Y同是数域K上的线性空间,D是X的线性子空间,T是从D到Y中的映射。如果对每个x,y∈D,有T(x+y)=Tx+Ty,则称T是可加算子;如果对每个x∈D和实数α有T(αx)=αTx,则称T是实齐次的,如果对一切α∈K这个关系式都成立,则称T是齐次算子。如果T既是可加的又是齐次的,则称T是线性算子或线性映射,D称为T的定义域,常记为D(T)。线性子空间R(T)={Tx|x∈D}称为T的值域(或像域)。当D(T)=X时,称T是X到Y的线性算子。当R(T)=Y时,称T为X到Y上的或满值域的。特别地,当Y=K(或Y是一维线性空间)时,T称为D上的线性泛函。线性泛函是线性算子的特殊情形。

巴拿赫空间完备的赋范线性空间被称为巴拿赫空间,是泛函分析研究的基本内容之一。

20世纪以来,当人们研究了许多具体的无限维空间及其上面相应的收敛性以后,自然而然地转向抽象形态的线性空间以及按范数收敛的概念。德国数学家希尔伯特、法国数学家弗雷歇和匈牙利数学家里斯在1904—1918年间所引入的函数空间是建立巴拿赫空间理论的基础。在这些空间里,强收敛、弱收敛、紧性、线性泛函、线性算子等基本概念已经得到初步研究。

1922—1923年,波兰数学家巴拿赫、奥地利数学家哈恩和美国数学家N.维纳等分别独立地引入了赋范线性空间的概念,并以巴拿赫的姓氏来命名。1922年,巴拿赫开始根据他所引入的公理来系统研究已有的函数空间,得到深刻的结果;同一年,哈恩从当时分析数学的许多成果中提炼出共鸣定理;1922—1923年巴拿赫得到压缩映射的不动点定理、开映射定理。1927年和1929年哈恩和巴拿赫先后证明了完备赋范空间上泛函延拓定理,引入了赋范线性空间的对偶空间(当时称之为极空间),这个定理的推广形式后来在局部凸拓扑线性空间理论中起了重要作用。1931年,巴拿赫写成《线性算子理论》。至此,完备赋范线性空间理论的独立体系已基本形成,并且在不到十年的时间内便发展成本身相当完整而又有多方面应用的理论。1

本词条内容贡献者为:

孙和军 - 副教授 - 南京理工大学